View the Products in Environmental Monitoring


Sampling and monitoring instruments for air, water and soil for the environmental, agricultural, mining and forestry markets.

View the Products in Environmental Monitoring
View the Products in Geotechnical and Materials Testing


Materials and Product testing for soil, asphalt, petroleum, concrete, cement, food and cosmetic industries.

View the Products in Geotechnical and Materials Testing
View the Products in Test and Measurement Instrumentation


Sensors, transducers and instrumentation for industry, manufacturing, research and development and factory automation.

View the Products in Test and Measurement Instrumentation

Precision to Aircraft De-icing

February 8, 2019
Category: News

The article below is from Vaisala


Snow,Freezing rain – it doesn’t take much of an imagination to picture how these and other wintry weather phenomena can make a pilot’s job harder by reducing visibility. But the same phenomena can also cause problems just by coming into contact with the aircraft.

The problem is that ice build-up on an aircraft changes its aerodynamics. This is why planes often need to be de-iced and then anti-iced during the winter to ensure safe take-offs. However, anti-icing fluids only provide protection against these weather phenomena for a limited period of time, known as holdover time, after which aircraft have to be treated again.

In practice, this means that to ensure the safety of the aircraft and its passengers as well as to avoid delays, the aircraft needs to be able to take-off before the anti-icing effect wears off. Therefore, being able to optimize the type and concentration of anti-icing fluids is crucial to ensure timely take-offs at busy airports without using excessive anti-icing fluids that are both more costly for airlines and detrimental to the environment.

Conventionally deciding whether a plane needs de-icing involves assessing the situation based on prevailing weather conditions and visual inspection of the plane. Vaisala has developed a more scientific approach in the form of a system that calculates checktimes for different types of anti-icing fluids based upon more accurate weather observations and algorithms.

The system gathers data from a weather station consisting of multiple weather sensors installed at the airport to determine the parameters needed to calculate the checktime, such as liquid water equivalent, present weather, air temperature and wind. The data is then fed to a data center, which processes the information, calculates the checktimes, and relays the information to pilots, de-icing coordinators and airline dispatchers. Rather than providing a range like traditional holdover time tables, the Vaisala system is able to generate a precise checktime, after which it is no longer safe to take off without reapplying the de-icing and anti-icing fluids.

After working with airlines in North America, Europe, and the Middle East, the results have shown that CheckTime helps to optimize the use of anti-incing fluids, leading to lower costs and more efficient airline operations without compromising the most important thing – safety. The system also reduced the environmental impact of anti-icing by eliminating the use of unnecessary fluids.