Hoskin Scientific is Still Here for You During Covid-19 (click for details)
The article below is from Luna Blog
EVs face unique design challenges in order to be competitive with gasoline-powered vehicles. The root of many of these challenges is in the EV battery pack. Drivers want similar vehicle range per charge when compared to a tank of gas, as well as the convenience they are used to with refilling a tank in just a few minutes. This means battery packs need to be able to store enough energy to go comparable distances without stopping and to get back on the road quickly once depleted.
Many EVs today use thousands of lithium ion cells to form the complete battery pack that powers a vehicle. Lithium ion batteries come with certain limits. They do not charge well at very low temperatures, and they can be dangerous if overheated, overcharged, charged too quickly or physically damaged.
The understanding of lithium ion batteries … and by extension their safety is continuously evolving. However, in a system that has thousands of cells packed in close proximity, a defective battery could cause thermal runaway and lead to a chain of violent cell failures. While rare, such an event is of concern in a passenger-filled vehicle that can sustain physical damage, especially one that uses a pack that is charged as quickly as possible.
High Definition Fiber Optic Sensing is a valuable tool for ensuring battery health and driver safety. Sensors are electrically passive, corrosion resistant and immune to EMI, allowing them to make measurements within a battery pack or an individual cell without risking a short circuit or picking up noise from electronics. The temperatures of all battery cells can be monitored during recharge or discharge to quickly look for damaged or faulty cells, which need to be replaced.
One possible future for EVs is detachable battery packs where a car pulls into a recharge station but instead of plugging in and charging its battery, the pack is removed and quickly replaced with a different fully charged pack, leaving the previous one to be charged and stored at the station. Packs would not belong to any individual driver. In this case, fiber could be placed within each pack and then while being recharged at the station, each battery pack could also be scanned to ensure the health of all cells in circulation. This application would grow in importance over time as the average age of battery packs in use rises. This application would allow batteries to charge at a safe rate in climate-controlled environments for an overall increase in battery life.
The article below is from Sequoia Press Release
In a world’s first, Sequoia Scientific, Inc. of Bellevue, WA, USA has invented a method (patent pending) to pair data from a turbidity meter (e.g. an OBS) with Sequoia’s acoustic backscatter sensor, the LISST-ABS. The pairing of the acoustic and the optical data leads to a much-improved estimate of suspended sediment concentration (SSC), compared to the estimate that either sensor can provide on its own. The new methodology allows for measurements of SSC that is within a factor of 2 of the actual value, e.g. based on sampling and subsequent filtration. This is an order of magnitude improvement over currently used technologies.
Sequoia is also introducing a new instrument system based on this technology, the LISST-AOBS Super-Turbidity Meter. All existing LISST-ABS sensors can be expanded to the LISST-AOBS Super-Turbidity Meter. Also, all existing turbidity sensors can be expanded to the LISST-AOBS Super-Turbidity Meter – contact Sequoia for details!
The implications of the new method and the introduction of the LISST-AOBS Super-Turbidity Meter are two-fold:
1) existing regulations (e.g. for stormwater, construction, environmental monitoring) that calls for monitoring of turbidity can be adhered to while
2) the user AT THE SAME TIME can obtain an ACCURATE estimate of SSC.
According to the US EPA, excessive sediment is the leading cause of impairment of the Nation’s waters . High SSC values influence virtually all aspects of aquatic life in a detrimental manner. Accurate measurements of SSC with low-cost sensors that can be deployed for months or years are therefore of importance for a wide range of environmental quality programs, remediation efforts, court cases etc.
The LISST-AOBS Super-Turbidity meter can help provide the data needed to make the decisions that will protect the Nation’s waters.
Link to Press Release on Sequoia website: https://www.sequoiasci.com/
Link to LISST-AOBS product page on Sequoia website:
https://www.sequoiasci.com/